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Abstract. The application of generalized Kramers-Kronig relations, the so-called Leontovich relations, to
thermal field theory is discussed. Medium effects contained in the full, thermal propagators can easily
be taken into account by this method. As examples the collisional energy loss of a charged particle in
a relativistic plasma and the radiation of energetic photons from a quark-gluon plasma are considered.
Within the leading logarithmic approximation the results based on the hard thermal loop resummation
technique are reproduced easily. However, the method presented here is more general and provides exact
expressions, which allow in principle non-perturbative calculations.

1 Introduction

Naively one expects that high energy particles, weakly in-
teracting with a medium, can be treated perturbatively.
The basic process (production, absorption, or scattering)
should follow from lowest order perturbation theory as in
vacuum. The only role of the medium is to provide the
particles with which the high energy particle interacts. In
other words, medium effects enter the cross section only
via the distribution functions of the in-medium particles.
Note, however, that in the case of bosons the cross sec-
tions can be infrared enhanced due to Bose condensa-
tion. Famous examples are the effective medium depen-
dent masses of neutrinos interacting with the solar or ter-
restrial matter leading to medium induced neutrino oscil-
lations. These masses follow directly from integrating over
the electron distribution [1]. Note that it is not even nec-
essary that these distributions are in equilibrium. Another
example is the production of dileptons with high invariant
masses from a quark-gluon plasma (QGP), which is given
to lowest order by the annihilation of bare quarks and
anti-quarks (Born term) [2]. Due to phase space the main
contribution comes from quarks in the high energy tail of
the distributions. At lower invariant masses (M < 1 GeV)
bare quarks are not sufficient and additional medium ef-
fects will lead to interesting structures in the dilepton pro-
duction rate [3].

The quantities mentioned above, namely the effective
neutrino mass and the dilepton production, are infrared
finite to lowest order perturbation theory. In some cases,
however, the lowest order contribution suffers from in-
frared divergences. In this case additional medium effects
even for high energy, weakly interacting particles are es-
sential. If the quantity under consideration has a logarith-
mic infrared singularity within naive perturbation theory,
a finite result can be obtained by using hard thermal loop

a Heisenberg fellow

(HTL) resummed propagators for soft momentum trans-
fers [4]. However, some quantities, e.g. damping rates [5],
which exhibit a higher infrared singularity, cannot be cal-
culated to leading order using the HTL method. Also con-
tributions beyond the leading logarithm might require a
non-perturbative treatment [6].

Here we will demonstrate, considering two examples,
that the leading logarithmic contributions can be calcu-
lated easily using generalized Kramers-Kronig relations.
In contrast to the HTL improved perturbation theory the
knowledge of the resummed propagator is required only
in the high frequency limit. The method presented here is
much more general as exact expressions can be derived,
which allow in principle non-perturbative results, if only
the full propagator in the high frequency limit is known.

In the next section we discuss the usefulness of the
Leontovich relation for thermal field theoretic calculations
in the case of the collisional energy loss of charged particles
in a relativistic plasma. This quantity has already been
considered by Kirzhnits [7] using the Leontovich method
within the language of plasma physics and recently by the
author within thermal field theory [8]. Therefore we will
discuss this quantity only briefly focusing on the use of
the Leontovich relation. In Sect. 3 we show in more detail
that the production rate of high energy photons from a
QGP can be treated in a similar way. For this purpose
we generalize the Leontovich relation used so far only for
gauge bosons to quarks.

2 Collisional energy loss

The energy loss of a fast charged particle in a medium is a
well studied subject [9]. Recently the energy loss of ener-
getic particles, such as leptons and partons, in relativistic
plasmas has attracted great interest. In relativistic heavy
ion collisions the energy loss of a high energy quark or
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gluon coming from primary hard collisions in the fireball
will lead to jet quenching. Jets therefore serve as a direct
probe for the fireball and may provide a signature for the
quark-gluon plasma formation [10]. In Supernovae explo-
sions the energy loss of neutrinos, having a weak charge,
in the plasma surrounding the stellar core might be an
important mechanism for triggering the explosion [11].

The total energy loss of a particle in a medium can be
decomposed into a collisional and a radiative contribution.
While the first one originates from the energy transfer to
the medium particles, the latter one is caused by radiation
from the fast particle. Here we want to consider only the
collisional component.

The collisional energy loss is defined as the energy
transferred per unit length from the fast particle to the
medium in a single collision. It is assumed that the fast
particle loses only a small fraction of its energy in each
collision. In quantum field theory the collisional energy
loss is defined as [12]

dE

dx
=

1
v

∫
dΓ ω, (1)

where v is the velocity of the incident particle with energy
E and ω = E−E′ the energy transfer to the medium. The
interaction rate Γ is identical with the inverse mean free
path. It can be calculated either from the matrix element
of the process responsible for the energy loss or equiva-
lently from the imaginary part of the self energy Σ of the
particle with four momentum P = (E,p), and mass M ,
(p = |p|) [12]

Γ (E) = − 1
2E

[1 − nF (E)] tr[(P/ +M) ImΣ(E, p)], (2)

where nF (E) = 1/[exp(E/T )+1] is the Fermi distribution
in the case of a fermion propagating through a plasma
of temperature T . In the following we restrict ourselves
to electrons or muons with high energies E � T in an
electron-positron plasma.

To lowest order the interaction rate is caused by elas-
tic scattering of the fast lepton off the thermal electrons
and positrons via one-photon exchange. Due to the mass-
less photon this rate is quadratically infrared divergent in
naive perturbation theory and cannot be regulated using a
HTL photon propagator containing Debye screening. The
collisional energy loss, on the other hand, due to the addi-
tional factor ω in the integrand of (1) is only logarithmi-
cally infrared divergent within naive perturbation theory
and finite within the HTL improved perturbation theory.
Such a quantity can be calculated by introducing a sepa-
ration scale eT � k∗ � T for the momentum transfer [4].
Restricting to the leading logarithmic approximation it is
sufficient to consider the soft momentum transfer k < k∗
only. Since the final result must be independent of k∗, it
follows from the soft contribution simply by replacing k∗
by the maximum momentum transfer. In the soft part of
the energy loss a dressed propagator, containing medium
effects such as Debye screening, has to be used to regulate
the infrared singularity. The exchange of a soft collective
photon or plasma mode corresponds to the energy loss by
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Fig. 1. Self energy of a fast fermion containing the full gauge
boson propagator

polarization of the medium, also known as Fermi density
effect [9].

The collisional energy loss, caused by the exchange of
a single dressed photon, follows from a one-loop approxi-
mation for Σ. Here we allow for the most general photon
propagator, indicated by the blob in Fig. 1. Then we find
for ultrarelativistic electrons or muons (v = 1) [12](

dE

dx

)
soft

=
e2

4π

∫ k∗

0
dk k

∫ k

−k

dω ω

[
ρl(ω, k) +

(
1 − ω2

k2

)
ρt(ω, k)

]
, (3)

where ρl,t are the spectral functions of the full photon
propagator, defined as

ρl,t(ω, k) = − 1
π
ImDl,t(ω, k). (4)

The full photon propagator fulfills the Kramers-Kronig
relation

Dl,t(k0, k) =
∫ ∞

−∞
dω

ρl,t(ω, k)
k0 − ω + iε

. (5)

At finite temperature the photon propagator has only two
independent components, given in Coulomb gauge by the
longitudinal and transverse propagators [13]

Dl(k0, k) =
1

k2 −Πl(k0, k) + iε
,

Dt(k0, k) =
1

k2
0 − k2 −Πt(k0, k) + iε

, (6)

whereΠl,t are the longitudinal and transverse components
of the polarization tensor. It should be noted that the soft
collisional energy loss, discussed here, follows according
to (3) only from the exchange of one dressed space-like
(ω2 − k2 < 0) photon from the particle to the medium.
However, the medium particles may undergo further inter-
actions. The physical process corresponding to the imagi-
nary part of the self energy of Fig. 1 can be found by using
cutting rules. An example is shown in Fig. 2. There is no
diagram, where two or more photons are emitted from the
fast particle, as in the case of the radiative energy loss.

Now we introduce the photon response function

R(k0, k) = −k2 Dl(k0, k) + (k2
0 − k2)Dt(k0, k). (7)
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Fig. 2. Example for a scattering diagram related to the imag-
inary part of the diagram in Fig. 1

Making the substitution k → q =
√
k2 − ω2, i.e. introduc-

ing the magnitude of the four momentum of the exchanged
photon, and using ImR(−ω) = −ImR(ω), which follows
from the general property ρl,t(−ω) = −ρl,t(ω) [14], we
find(
dE

dx

)
soft

=
e2

2π2

∫ q∗

0
dq q

∫ ∞

0
dω ω

ImR(ω,
√
q2 + ω2)

q2 + ω2

(8)
with q∗ � T . Equation (8) agrees with [7], which is based
on plasma physics arguments if we replace there Q2 by
e2/4π.

The response function R fulfills the following Kramers-
Kronig relation [7]

R(k0, k) = R̃+
2
π

∫ ∞

0
dω ω

ImR(ω, k)
ω2 − k2

0 − iε , (9)

which can be shown to be equivalent to (4), if we use
ρl,t(−ω) = −ρl,t(ω). Here R̃ = limk0→∞ReR(k0, k).

The Kramers-Kronig relation (9) can be generalized
by making a Lorentz transformation from ω and k to ω′
and k′ given in a system which moves with the velocity
u relative to the initial system. Following the arguments
in [15,16], choosing u · k = 0 and |u| = 1, and utilizing
that R(ω,k) depends only on k in an isotropic and homo-
geneous medium we obtain the Leontovich relation [7]

R(k0,
√
k2 + k2

0) = R∞+
2
π

∫ ∞

0
dωω

ImR(ω,
√
k2 + ω2)

ω2 − k2
0 − iε ,

(10)
where R∞ = limk0→∞ReR(k0,

√
k2 + k2

0).
The ω-integral

I =
2
π

∫ ∞

0
dω ω

ImR(ω,
√
q2 + ω2)

q2 + ω2 (11)

appearing in the energy loss (8) agrees with the integral
on the right hand side of the Leontovich relation, if we
replace k0 by iq and

√
k2 + k2

0 by 0, i.e. k2 = q2, in (10).
Therefore we can write [7]

I = R(iq, 0) −R∞. (12)

The zero momentum limit of the response function
vanishes due to the fact that there is no preferred direction
in the medium at vanishing momentum [7]. Consequently,
all we have to know is the response function in the high
frequency limit R∞ to find the collisional energy loss in
the leading logarithmic approximation. Defining

ω2
0 ≡ lim

k0→∞
Πt(k0,

√
q2 + k2

0) (13)

we obtain from (7)

R∞ = − ω2
0

q2 + ω2
0
. (14)

Using the Kramers-Kronig relation for the transverse
dielectric function, which is related to the transverse po-
larization tensor [8], Kirzhnits argued [7] that ω0 is inde-
pendent of q and can be considered as the effective thermal
mass of the transverse high frequency plasma excitations,
which is given by ω2

0 = e2n〈1/Ω〉 in the relativistic limit.
Here n is the number density of the medium and Ω the
energy of the plasma particles.

Combining (14) with (8) and replacing q∗ � ω0 by
qmax, which is proportional to

√
ET in the relativistic

limit E � Ω [7], we end up with the final result for the
total collisional energy loss

dE

dx
=
e2

4π
ω2

0 ln
qmax

ω0
. (15)

This result is “exact” in the sense that it is independent
of any approximation to the full photon propagator. To
logarithmic accuracy the final result just depends on the
parameter ω0.

To proceed from here we have to make an approxi-
mation for ω0. Since in the high frequency limit medium
effects are small, we calculate ω0 by lowest order pertur-
bation theory. Adopting the gauge invariant expression
for the transverse polarization tensor in the high temper-
ature limit [17], we obtain ω2

0 = 3m2
γ/2, where the plasma

frequency is given bymγ = eT/3. As expected ω0 is equiv-
alent to the high frequency mass of the transverse photon
ω2

0 = e2n〈1/Ω〉 [8]. Inserting the high temperature result
for ω0 in (15) leads to an estimate for the collisional en-
ergy loss which agrees to leading logarithm with the one
found in the HTL approximation [12]

dE

dx
=
e2

4π
ω2

0

(
ln

√
ET

ω0
+ 0.120

)
. (16)

In contrast to the HTL method we only had to know
the transverse polarization tensor in the high frequency
limit. Moreover, we observe that the HTL result has al-
ready the same form as the exact result (15), which in-
cludes infinitely many higher order diagrams such as the
one in Fig. 2. Assuming that the exact high frequency
transverse polarization tensor can be approximated by its
high temperature limit we find that the complete colli-
sional energy loss can be estimated by its lowest order
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Fig. 3. Lowest order amplitudes for photon production

HTL result (16) and that higher order diagrams can be
neglected at least within the leading logarithm approxi-
mation.

In [8] this result has been applied to the energy loss of
energetic partons in a QGP. It has been shown that the
radiative energy loss [18] caused by bremsstrahlung from
the fast particle, which increases linearly with the distance
L over which the parton propagates, dominates over the
collisional one for L > 1 fm.

Another application of (15) has been discussed in [19]
in connection with the neutrino energy loss in matter. Here
the collisional energy loss provides a reliable estimate of
the total energy loss since bremsstrahlung from the neu-
trino, i.e. emission of a Z boson, is suppressed by the large
mass of the gauge boson at least for temperatures below
T � 100 GeV.

3 High energy photons

Now we want to discuss another example, namely the pro-
duction of high energy real photons in the QGP, which
might also serve as a promising signature for the QGP
formation in relativistic heavy ion collisions [20]. Due the
weak interaction of photons with the QGP photons
present as well as jet quenching a direct probe for the
hot fireball. To lowest order the production rate of real
photons is given by the diagrams of Fig. 3 (Compton scat-
tering, annihilation with gluon emission). Here an inter-
mediate bare quark appears, which can be assumed to be
massless as the bare mass of up and down quarks can be
neglected compared to the temperature T of the QGP.
This leads to a logarithmic infrared divergence in the pro-
duction rate, which is regulated by medium effects.

The production rate corresponding to the processes
of Fig. 3 can be calculated by using the HTL resummed
quark propagator in the case of a soft quark exchange,
i.e. momentum exchange much smaller than T . This cor-
responds to a one-loop calculation including a HTL quark
propagator, that contains an effective quark mass of the
order gT , which cuts off the logarithmic singularity. For
the hard momentum transfer the tree level scattering ma-
trix elements convoluted with the parton distribution
functions can be used [21–23]. In this way the produc-
tion rate of energetic photons to leading logarithmic or-
der αs ln(1/αs) in the strong coupling constant has been
obtained.

Here we will derive the photon rate to leading log-
arithm, using the Leontovich relation for the full quark
propagator, which allows a more general and after all sim-
pler derivation of the rate than applying the HTL method.
For this purpose we calculate the photon production rate
from the imaginary part of the polarization tensor accord-
ing to [21]

Fig. 4. Polarization tensor containing a full quark propagator

E
dR

d3p
= − 2

(2π)3
1

eE/T − 1
ImΠµ

µ (E). (17)

This expression is exact to all orders in αs and to leading
order in α.

Here we focus only on the soft contribution to the pho-
ton rate since the hard contribution can be calculated per-
turbatively from Fig. 1 restricting to the logarithmic ap-
proximation. Since the energy of the produced photon is
high (E � T ) the polarization tensor is given by Fig. 4.
The blob denotes the full non-perturbative quark propa-
gator. Due to kinematics there is only one full quark prop-
agator, since the other one has to be hard, and no vertex
correction since the high energy photon resolves the ver-
tex completely. By cutting this polarization tensor one ob-
serves that all processes are taken into account, where the
soft quark interacts with the medium in all possible ways.
For example it can absorb a thermal gluon as in Fig. 3.
But also bremsstrahlung from the thermal particles and
other higher order processes are included.

Now we want to calculate the photon production rate
from Fig. 4 for the most general full quark propagator
without assuming any approximation for it. For this pur-
pose, we proceed similarly as in the case of the collisional
energy loss for energetic charged particles in a plasma. We
start from an exact expression for the imaginary part of
the soft polarization tensor in the case of two massless
quark flavors using E � T [21]

ImΠµ
µ (E) =

5e2

12π

∫ ∞

0
dk

∫ k

−k

dω [(k − ω)ρ+(ω, k)

× + (k + ω)ρ−(ω, k)] θ(q2c − k2 + ω2), (18)

where qc � T is the separation scale between the soft and
the hard contribution, ω and k the energy and the mag-
nitude of the three momentum of the soft quark, and ρ±
the spectral functions of the full quark propagator S(K)
in the helicity representation [24]

ρ±(ω, k) = − 1
π
Im

1
D±(ω, k)

(19)

with (K = (k0,k))

S(K) =
γ0 − k̂ · γ

2D+(k0, k)
+
γ0 + k̂ · γ

2D−(k0, k)
. (20)

Replacing again k by q =
√
k2 − ω2 in the integral of

(18) we find

ImΠµ
µ (E) = − 5e2

12π2

∫ qc

0
dq q

∫ ∞

−∞
dω

× ω

ω2 + q2
ImQ(ω,

√
ω2 + q2), (21)
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where the quark response function Q is given by

Q(k0, k) =
k

k0

(
k − k0
D+(k0, k)

+
k + k0
D−(k0, k)

)
. (22)

This response function fulfills the same Kramers-
Kronig relation as the photon response function (9)

Q(k0, k) = Q̃+
1
π

∫ ∞

−∞
dω ω

ImQ(ω, k)
ω2 − k2

0 − iε , (23)

where Q̃ = limk0→∞ReQ(k0, k). This relation is a direct
consequence of the definition of the spectral functions

1
D±(k0, k)

=
∫ ∞

−∞
dω

ρ±(ω, k)
k0 − ω + iε

(24)

using ρ+(−ω, k) = ρ−(ω, k) [25].
The Kramers-Kronig relation (21) can be generalized

again by the Lorentz transformation of Sect. 2, from which
we obtain the Leontovich relation analogously to (10)

Q(k0,
√
k2
0 + k2) = Q∞+

1
π

∫ ∞

−∞
dωω

ImQ(ω,
√
ω2 + k2)

ω2 − k2
0 − iε ,

(25)
where Q∞ = limk0→∞ReQ(k0,

√
k2
0 + k2). This relation

is more restrictive than the Kramers-Kronig relation (23)
and will be used to evaluate the photon production in the
following from (21).

The ω-integral in (21) agrees with the integral on the
right hand side of the Leontovich relation, if we replace
again k0 by iq and

√
k2
0 + k2 by 0, i.e. k2 = q2, in (25).

Since D+(k0, k = 0) = D−(k0, k = 0) [3,25], Q(iq, 0) =
0. Hence the imaginary part of the polarization tensor
containing the most general in-medium quark propagator
is given by the simple expression

ImΠµ
µ (E) =

5e2

12π

∫ qc

0
dq q Q∞. (26)

Using the Leontovich relation we were able to express
the soft part of the photon production rate by an integral
over the real part of the response function only in the high
frequency limit just below the light cone. This expression
is exact as long as we do not assume any approximations
for the response function. The advantage of this method is
that we do not have to know the quark response function
or the quark propagator over the entire energy range, but
only in the high frequency limit.

Starting from the most general expression for the full
quark propagator (see e.g. [3])

D±(k0, k) = (−k0 ± k) [1 + a(k0, k)] − b(k0, k) (27)

and using that the scalar functions a and b fulfill the fol-
lowing inequalities in the high frequency limit, where the
medium effects on the quark propagator become small,
limk0→∞ a � 1 and limk0→∞ b � k0, we find

Q∞ = lim
k0→∞

2b∞
q2/k0 − 2b∞

. (28)

Here b∞ = limk0→∞ b(k0,
√
k2
0 + q2). To proceed we have

to make an approximation for the full quark propagator
or equivalently for the response function in order to de-
termine b∞.

In the high frequency limit the response function
should be calculable perturbatively, as it is also the case
for the photon or gluon response function which is related
to the dielectric function of the medium [7,8]. For in the
high frequency limit the dielectric function has to be close
to its vacuum value and can be computed therefore pertur-
batively. The same argument holds for the quark response
function in the high frequency limit. Note that the quark
response function to lowest order, determined from the
one-loop quark self energy, is infrared finite. In the high
temperature limit [17] the gauge invariant result

b∞ = −m
2
q

k0
⇒ Q∞ = − 2m2

q

q2 + 2m2
q

(29)

is found. Here 2m2
q = g2T 2/3 is the square of the effective

high frequency quark mass. Combining (26) with (29) we
get

ImΠµ
µ (E) = − 5e2

12π
m2

q ln
q2c

2m2
q

, (30)

where we assumed qc � mq. This result has also been
found by lowest order HTL perturbation theory, where
the factor 1/2 under the logarithm could be derived only
numerically [21,22]. Using, however, the Leontovich rela-
tion, where one needs to know the response function only
in the high frequency limit, this factor, related to the high
frequency effective quark mass, has been obtained analyt-
ically.

Combining the soft part with the hard part, calculated
perturbatively from Fig. 3 in [21], we obtain the final result
for the production rate of energetic photons to leading
logarithm

E
dR

d3p
=

5
18π2 ααs T

2 e−E/T ln
0.2317E
αsT

. (31)

Here the separation scale qc serving as an infrared cutoff
for the hard part drops out since the hard part and the
soft part have the same factors in front of the logarithm.
This had to be expected by physical reasons, since the final
result has to be independent of the arbitrary separation
scale qc [4].

The result (31) agrees with the lowest order HTL con-
tribution [21,22]. Unfortunately, this result is of no practi-
cal relevance, as for physical values of the strong coupling
constant, terms beyond the leading logarithm dominate.
These contributions come from higher order diagrams, i.e.
two-loop diagrams of the HTL perturbative expansion de-
scribing e.g. bremsstrahlung, which show a strong infrared
sensitivity [26]. They are not included in the soft part of
the polarization tensor using the full quark propagator
(26), since they come from the exchange of a hard quark
[26]. For realistic values of the coupling these contribu-
tions even dominate clearly over the lowest order ones, in
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particular at high photon energies E as the two-loop con-
tributions are proportional to ET in contrast to the one-
loop contribution which is proportional to T 2. As a mat-
ter of fact, presumably infinitely many diagrams within
the HTL resummed perturbative expansion contribute to
order αs [6]. Therefore it would be desirable to extend
the arguments given here also to hard momentum trans-
fer. Maybe a resummation of all higher order diagrams
contributing to order αs leads to a cancellation between
these diagrams and a suppression of the bremsstrahlung
and higher processes in the hard photon production.

4 Conclusions

Lowest order perturbation theory at finite temperature in
the weak coupling limit works only for quantities, which
are infrared finite in naive perturbation theory. Examples
are effective masses and the production of dileptons with
high invariant masses.

Quantities of energetic particles (E � T ) which are
logarithmically infrared divergent in naive perturbation
theory, such as the collisional energy loss or the pho-
ton production rate, can be calculated within the lead-
ing logarithm approximation using the lowest order HTL
improved perturbation theory. To extract the leading log-
arithm it is sufficient to consider soft momentum transfers
described by HTL propagators. However, for realistic val-
ues of the coupling constants, in particular in the case
of the strong coupling constant, contributions beyond the
leading logarithm become important and can even domi-
nate, as in the case of the photon production. For the pho-
ton production rate these contributions have been shown
to be non-perturbative, i.e. infinitely many higher order
diagrams containing HTL propagators and vertices con-
tribute to the same order in the coupling constant.

Quantities, such as damping rates, which exhibit a
higher degree of infrared divergence in naive perturba-
tion theory cannot be treated within the HTL improved
perturbation theory. So many properties of (high energy)
particles in a medium cannot be calculated perturbatively
even in the weak coupling limit.

Here we presented a method for computing within
thermal field theory quantities of energetic particles, which
are in naive perturbation theory logarithmically infrared
divergent, by using generalized Kramers-Kronig relations.
These so-called Leontovich relations follow from the usual
Kramers-Kronig relations for the thermal propagators per-
forming a Lorentz transformation. Applying these more
restrictive relations one is able to express the soft part of
the quantities under consideration, such as the collisional
energy loss or the photon production, by simple integrals.
For evaluating these integrals one needs only the self en-
ergy of the high energy particle in the high frequency limit
just below the light cone. In this way an exact expression,
i.e. independent of any approximation for the full propa-
gator, for these quantities within the logarithmic approxi-
mation is obtained. Assuming perturbation theory to hold
for the high frequency self energies and using the HTL

result for them, the results yielded within the lowest or-
der HTL improved perturbation theory are reproduced. In
contrast to the HTL resummation technique the method
presented here enables analytical calculations of the soft
contributions. Also it is more general, allowing in princi-
ple non-perturbative results, if only the full self energy in
the high frequency limit is known. Since the application
of perturbation theory at finite temperature fails in many
cases even in the weak coupling limit, it would be desir-
able to have non-perturbative or even exact statements.
Therefore it might be worthwhile to extend the methods
presented here also to hard momentum transfers, going
beyond the leading logarithm.
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